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A power substation is susceptible to intrusions of foreign objects. The intrusions can likely result in failures of
power supplies. Therefore, recognizing foreign objects becomes important to ensure constant and stable
power supplies. However, existing object recognition methods fail to achieve acceptable accuracy and perfor-
mance. In this paper, we propose an efficient Foreign Objects Detection Network for Power Substation
(FODN4PS) to improve the recognition accuracy with less time. FODN4PS consists of a Moving Object Region Ex-
traction Network (MORE Net) and a classification network, where the MORE Net can get the position of foreign
objects, and the classification network can recognize the category of foreign objects. Experimental results show
that FODN4PS is faster and more accurate in object recognition than the Fast R-CNN and Mask R-CNN.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The power substation is an important hub connecting a power plant
and users. The safety and stability of its operating environment are of
great importance. Once the equipment in the substation is in trouble,
the safety of the power system and the stability of the power supply
will be significantly affected [1]. However, substation accidents occur
frequently due to foreign objects intrusion [2]. The intrusion of foreign
objects in the substation will cause an irreversible impact on power
equipment, even cause paralysis of the whole substation. Therefore, it
is of considerable significance to accurately find foreign objects in
time, and then take corresponding measures to remove them.

At present, the inspection of foreign objects in power substations is
usually done by manual inspection. This method mainly depends on
the subjective sensory qualitative judgment and analysis of inspectors,
and it is very much affected by the working experiences of the inspec-
tors. Some abnormal conditions will inevitably be ignored due to the
weakness of subjectivity and fatigue of human eyes. At the same time,
a substation is a high-risk place, so it is challenging to inspect in poor
weather conditions.

Moving target detection is to separate the foreground and back-
ground containing the moving target from the stationary or slowly
moving background environment, extract and locate themoving target,
and prepare for subsequent target tracking, behavior understanding
inghuansheng@ustb.edu.cn
and recognition, etc. The result of moving target detection directly af-
fects the accuracy of the subsequent tasks. ViBe(Visual Background Ex-
tractor) [3] is a pixel-level foreground detection algorithm with high
real-time performance, low memory occupancy, and high foreground
detection accuracy. But when the background is complex, there may
be serious “ghosting” and “flashing points” problems in the processing
results using Vibe.

Deep learning, esp. convolutional neural networks had achieved
great progress in computer vision [4,5] and began to widely used in
the patrol inspection system [6]. Researchers are using R-CNN (Re-
gion-CNN) [7] and its variations for intrusion detection, such as power
transmission lines, airfield pavement, and usually modified networks
are used to get better performance. For example, Shi et al. [8] improved
the accuracy of the network by expanding data with GAN (Generative
Adversarial Networks) [9]. Liu et al. [10] proposed a new network
based on Fast R-CNN [11], which significantly improved detection accu-
racy and speed. However, the current R-CNN series of target detection
algorithms are all based on RPN (Region Proposal Network) [12] to gen-
erate candidate target boxes. Compared with the original R-CNN that
generates target candidate boxes by sliding window, the selective
search method filters out a large number of useless anchors. However,
after NMS (Non-Maximum Suppression) [13] processing, RPN brings a
series of complex calculations and lots of redundant candidate boxes,
which is time-consuming. Therefore, we propose the FODN4PS method
to reduce time consumption, and redundant boxes are eliminated,
which helps to improve detection accuracy and performance for foreign
objects detection.

We conducted a detailed evaluation of the proposed network, in-
cluding the analysis of different data enhancement methods, the
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comparison with common classification networks, Faster R-CNN and
Mask R-CNN. The contributions for this paper are as follows.

• We propose FODN4PS, which effectively avoid the problems of large
amount of computation and redundant candidate boxes caused by
RPN. FODN4PS changes the way of generating candidate target
boxes and ensure that each target has only one candidate box for sub-
sequent operations, which further reduce time consumption.

• Wedesign a simple but efficient target detection approach composing
of extraction of candidate target box and classification implemented
by FODN4PS. Compared with the complex two-stage target detection
algorithm, the candidate target box after the process of FODN4PS is
more accurate, and after the training of classification network in ad-
vance, FODN4PS obtains higher accuracy.

• We use image rotating randomly and GAN to expand the number of
data sets for improving training accuracy. Through comparative eval-
uations, we found that the accuracy is improved using these two
methods at the same time.

• We make comprehensive comparative evaluations to prove that
FODN4PS is more efficient than Faster RCNN and Mask RCNN.

This paper is organized as follows. Section 2 reviews related work.
Section 3 introduces FODN4PS structure design, including MORE Net,
classification network, and loss function. Section 4 evaluates FODN4PS.
Conclusion and future work are given in section 5.

2. Related work

In our work, we use a set of methods to improve the performance
and accuracy of foreign object detection, includingfirstly, data enhance-
ment to improve the possible number of data samples to cater for differ-
ent scenes in a power substation; and also, our work is related the
classical computer vision problem of object detection and background
modeling, therefore we will review the related work on data enhance-
ment, object detection and background modeling.

2.1. Data enhancement

The quality of training data will affect recognition accuracy. In the
absence of training data, researches usually use data enhancement to
expand the training data or design amethod that can achieve good per-
formance in limited training data. Zhao [14] presented an automatic ap-
proach for small organ segmentation with limited training data. Data
enhancement refers to processing images by keeping their basic catego-
ries unchanged, such as cropping, flipping, rotating, zooming, panning,
and adding noise. By artificially increasing the number of samples,
data enhancement helps to reduce overfitting and improve generaliza-
tion. Gupta et al. [15] proposedmethods to enhance data sets by pasting
real-segmented objects into original images [16]. Bochkovskiy et al. [17]
used mosaic technology and added random scaling, cropping, flipping,
rotating and erasing to achieve data enhancement in YOLOv4, and
proved that the method has a good effect through experiments. Some
researchers used DCGAN (deep convolutional generative adversarial
networks) to increase the number of samples and thus improve the rec-
ognition accuracy [18–20]. Wu et al. [21] proposed to use GANs to im-
prove the recognition accuracy of tomato leaf diseases. Wang et al.
[22] used night images as input, generated virtual target scenes similar
to the daytime environment through DCGAN and combined Faster
RCNN target detection to obtain high-precision detection results.

2.2. Object detection

Image morphology [23] is a standard method to detect foreign ob-
jects. Ke et al. [24] used SIFT algorithm [25] to match the designated
area of the template image and patrol image collected in the substation.
Based onmatching the image, Rosten et al. [26] used corner detection to
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count the feature points of thedesignated area.Moreover, foreign object
recognition is carried out by comparing the feature points with the
threshold set previously. The general process of traditional image mor-
phology detection is as follows, firstly, it uses Gaussian filter [27] [28],
median filter [29], or bilateral filter [30] to eliminate noise and improve
the accuracy of recognition, then Otsu (maximum inter-class variance)
[31] is used to segment the background and foreground of the image.
After these steps, the foreign objectswill be recognized. Due to the com-
plex background of substation and the influence ofweather, it is difficult
to determine a threshold value for all data. It can only artificially set the
threshold value for each image, which increases the overhead of the
whole detection process. Moreover, the efficiency is extremely low.

Deep learning has made great progress in the field of computer vi-
sion. CNN (Convolutional Neural Network) is becoming an important
method for object detection. Krizhevsky et al. [32] proposed a deep con-
volution neural network (DCNN), AlexNet, which improves the existing
image classification accuracy in the large-scale visual recognition chal-
lenge (ILSVRC). Since then, various deep learningmethods are designed
for general object detection [33] [11] [34]. R-CNN [35] can be considered
as the first to use deep learning algorithms for target detection, using a
large number of training data to train the convolutional neural network
model. Due to the problem of redundant candidate boxes in R-CNN, the
subsequent Fast R-CNN [36], Faster R-CNN [37], and Mask R-CNN [38]
are all improvements to resolve this problem. These above methods
are usually called CNN based two-stage detectors.

Joseph et al. [39] applied the convolutional neural network to the en-
tire image and propose a one-stage network called YOLO, the same idea
as SSD (Single Shot MultiBox Detector) [40]. Since then, Joseph pro-
posed the v2 and V3 versions of YOLO [41] [42], which not only guaran-
tees the performance of one-stage target detection, but also obtains
higher accuracy. Huang et al. [43] proposed DenseBox to detect targets
directly without relying on candidate boxes. After that, some anchor-
free target detection methods have emerged. Zhang et al. [44] pointed
out that the essential difference between anchor-based and anchor-
free detection is actually how to define positive and negative training
samples, which leads to the performance gap between them, and pro-
posed an optimization method called activate training sample section.
Law et al. [45] got the final bounding boxes by predicting the upper
left and lower right corners in Cornernet. Wang et al. [46] proposed an
alternative called “Guided Anchoring (GA)” Region Proposal Network,
and proves that GA-RPN is very efficient. However, the foreign objects
in the substation only account for a very small part of the whole
image, therefore, processing the whole image is time-consuming.

2.3. Background modeling

Background modeling technology [47] [48] [49] has been applied to
moving object detection. Especially, ViBe [3] is a pixel-level background
modeling and foreground detection algorithm. The ViBe algorithm not
only simplifies the process of background model building, but also
deals with the situation of sudden background change. Mao et al. [50]
proposed a visual background extracting algorithm based on multi-
scale space to solve the problem that there exist ghosts and dynamic
background disturbance in the target detection process for the conven-
tional ViBe algorithms. Liu et al. proposed an algorithm based on the
Pearson coefficient, which is an improvement on the traditional ViBe al-
gorithm to solve video jitter occurs due to external factors. Bai et al. pro-
posed a improved ViBe algorithm to speed up ghost removal by locating
the ghost area and re-initializing the area. Sun et al. [51] and Xia et al.
[52] applied the ViBe algorithm to extract the moving vehicles from
the video. However, they did not carry out subsequent processing.

3. Design of the FODN4PS approach

Currently the two-stage target detection algorithms are all based on
RPN, which generates a lot of redundant anchors in the whole image.



Fig. 1. FODN4PS network structure.

Fig. 2. The process of MORE Net.
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These algorithms obtain hundreds of regions of interest after the NMS
processing,which causes a series of computation and increases overhead
of recognition. Compared with the complex two-stage target detection
algorithm, we optimize this process by extracting accurate target candi-
date boxes which do not involve a series of complex calculations. There-
fore, improved detection performance by obtaining more accurate
candidate target boxwith higher classification accuracy can be achieved.

Therefore, we design the structure of FODN4PS as shown in Fig. 1,
which consists of two parts. The first part is the MORE Net (Moving Ob-
ject Region Extraction Network) for detecting moving objects, which
extracts the candidate region box with foreign objects and only sends
one candidate target box of each object to theneural network for feature
extraction; The second part is the classification network, whose input is
the candidate target box generated by MORE Net. After MORE Net and
classification network, FODN4PS can obtain the category and location
information of foreign objects. Finally, FODN4PS maps the obtained in-
formation to the original image.

3.1. MORE net structure

Fig. 2 presents the work flow of the MORE Net. First, it analyzes the
input video segment, using the first three frames of the video to con-
struct a background model. When the invasion of a foreign object oc-
curs, the pixel value of a specific range in the background model will
change. Therefore, compared with the established background model,
MORE Net can obtain the area with foreign objects.

3.2. Classification network

Fig. 3 presents the classification network, which is mainly composed
of convolution layers and a full connection layer by considering Google
3

Net [53]. The first layer uses 7 × 7 × 3 convolution kernel to filter a
224 × 224 × 3 input image. The step length of the convolution kernel
is 2. AfterMax pooling, the output is 56× 56× 64. The second layer con-
volutes the result of the Max pooling with a 3 × 3 kernel. Its output is
28 × 28 × 192. Similarly, the third, forth, fifth layer convolutes the result
of the former layer with 1 × 1 kernel for dimension reduction and then
convoluteswith a 3× 3 convolution kernel. After the process of softmax,
FODN4PS obtains the object category.

3.3. Loss function

Eq. (1) represents the FODN4PS loss function. FODN4PS sets another
classifier in the network for auxiliary classification, and adds the loss
function of the auxiliary classifier to the total loss function according
to the weight λ of 0.3.

Loss ¼ Lcls þ λLclsa ð1Þ

Lcls is the category of each region predicted by the main classifier,
and Lclsa is the category of each region predicted by the auxiliary classi-
fier. The category loss function is shown as eq. (2), where pi is the prob-
ability of target prediction, pi∗ indicates whether it is the real target, 1
represents the real target and 0 represents the fake target.

Lclsa ¼ Lcls ¼ ∑
i

− log p⁎i pi þ 1−pi⁎
� �

1−pið Þ
h in o

ð2Þ

3.4. Improved ViBe for candidate box detection

Currently all two-stage target detection algorithms are based on
RPN, which generates anchors at the pixel points in the whole image.



Fig. 3. classification network structure.

Fig. 4. The result with imporved ViBe algorithm.
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A picture will have 2 K ~ 4 K anchors after the processing with the RPN.
However, there are only a very small number of the anchors that have
targets, and the rest are redundant anchors which are useless but
time-consuming for processing. Instead of RPN, FODN4PS uses the
MORE Net to extract candidate boxes based on the improved ViBe algo-
rithm, which is good at extracting moving targets with less time.

There are some disadvantages in the original ViBe algorithm, which
may generate many flashing points and ghosts [54] if the background is
complex. Ghosts usually exist in two cases. The first case is that when a
background model is established according to the first frame, but the
moving object stand there statically at that moment, so the ViBe algo-
rithm thinks that the moving object belongs to background and estab-
lishes a wrong background model. Then the seemingly static object
moves and ghosts are generated. The other case is that in the middle
of the video, the stationary object moves to generate ghosts. In the sub-
station scene, the equipment is stable and it doesn't move suddenly.
Therefore we improve the background modeling using more than one
frames. MORE Net uses the average pixel value of the first three frames
of the video to establish the background model to avoid ghosts, more
ever,MORENet eliminates theflashing points by adding eroding and di-
lating. Take the pixel of a point as an example, let the pixel point be x,
and the corresponding pixel value be V(x). Eq. (3) shows the calculation
4

formula, where n represents the number of frames; i represents the R, G
and B channels of the color of the image.

V
C ið Þ
average ¼

∑n
k¼1V

Ci
k xð Þ

N
ð3Þ

Fig. 4 shows the comparisons of the effects before and after improv-
ing the ViBe algorithm. Fig. 4(a) is the original image with a foreign ob-
ject. Fig. 4(b) shows the result after original ViBe algorithm processing.
We can see that there are countless flashing points and a ghost area
after the original ViBe algorithm. After the operation of eroding and di-
lating, the flashing points are effectively eliminated, as shown in Fig. 4
(c), and after the process of the improved ViBe algorithm proposed in
this paper, the ghosts disappear, and the results are shown in Fig. 4(d).

When there are foreign objects, the whole process of MORE Net is
working as follows:

1. MORE Net initializes the background model firstly. For a pixel point,
The average of the sameneighbor positions in thefirst three frames is
selected as its sample value. The calculation formula is

M0 xð Þ ¼ v0
∑n

i¼1yi
n jyi ∈NG xð Þ

� �
. where n is the count of the selected

frames, NG(x) is the spatial neighbor of position x.



Fig. 5. the result of image processing.

Table 1
accuracies of data processing methods.

Methods True detections False detections Accuracy

The original image 331 104 76%
Image processing 352 77 82%
GAN 364 74 83%
GAN and image processing 371 65 85%
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2. Then, MORE Net performs foreground detection. In the first step, the
backgroundmodel stores a sample set for each point.When there are
a foreign object, MORE Net compares each new pixel value with the
sample set to determine whether it belongs to the background by
calculating the distance between the new pixel value and each
Fig. 6. Sample

5

sample value in the sample set. If the distance is less than the dis-
tance threshold, the number of approximate sample points increases.
If the approximate sample points are greater than the points thresh-
old, the new pixel point is considered as the background. The detec-
tion process is mainly affected by three parameters including the
number of sample sets of the pointN (set to 20), the threshold m
(set to 2) for the number of approximate sample points, and the
threshold R (set to 20) for similar distance determination.

Because there are lighting effects in the background, MORE Net ap-
plies theupdate of the backgroundmodel tomake it adapt to the contin-
uous changes of the background, such as changes in lighting and
changes in background objects. Concerning the influence of lighting,
More Net introduces the automatic update of the background model.
When a pixel is detected as foreground N times continuously, More
Net will update this pixel as a background point.
data sets.



Fig. 7. The comparison with other classification networks.

Fig. 8. the results with of MORE Net.
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4. Evaluation

4.1. Hardware setting

The hardwarewe use for testing includes: the graphic card is NVIDIA
GeForce GTX TITAN X with 12G memory, Intel i7 CPU. The software
packages include python is 3.6 with CUDA version 10.1.

4.2. Data enhancement

The size of training set affects the performance of the trainedmodel.
However the data of foreign objects in the substation is hard to collect.
To solve the problem of insufficient training data, we adopts GAN [55]
method to generate new images and rotates images randomly to en-
hance the data. Firstly, We expand the data set by rotating the original
image. Considering that the weather conditions will increase the diffi-
culty of recognition, we fuzzy the images to make the model friendly
for poor weather conditions. The original and the processed image are
shown in Fig. 5.
6

In order to test the effect of the data processingmethods, we carried
out comparative experiments on original images, pre-processed, GAN
generated, GAN and pre-processed images. We collected the following
data set, some are with foreign objects. There are 3000 original images,
5000 pre-processed images, and 5000 GAN-generated images. The ex-
perimental results are shown in Table 1. we can see that the combina-
tion of GAN and image enhancement improves the accuracy of the
model more effectively. The accuracy rate is calculated as follows, and
the total number of test sets is 500.

Fig. 6 shows the examples of the experimental data.

4.3. Performance evaluation

In order to analyze the performance of FODN4PS, we evaluated the
MORE Net first, and then the classification network. We compared
FODN4PSwith other classification networks, such as ResNet50, AlexNet,
LeNet, and so on. The result is shown in Fig. 7.We can see that when the
network is trained for 20 epochs, most classification networks tends to
converge, and FODN4PS has a slightly higher accuracy than other



Fig. 9. experimental results.

Table 2
comparison with Faster R-CNN, Mask R-CNN and YOLOv3.

Target detection algorithm Running speed (seconds per frame) Accuracy

FODN4PS Net 0.15 85%
Faster R-CNN 0.25 78%
Mask R-CNN 0.21 81%
YOLOv3 0.04 48%
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networks. Meanwhile, we can find that the loss of FODN4PS gradually
tends to be flat, and finally reaches to 0.15, which indicates that
FODN4PS is easy to converge with this kind of data.

Fig. 8 shows theprocess of getting the candidate boxwithMORENet.
Firstly, MORE Net establishes the background model without foreign
objects. Then, when foreign objects invade the substation, MORE Net
detects the area with foreign objects. By separating the foreground
from the background, we can clearly see the area with foreign objects.
Finally, MORE Net determine the minimum circumscribed rectangle of
the region according to the connectivity of the region as the result of
MORE Net.

After MORE Net, FODN4PS maps the information of category and lo-
cation to the original image, and the final result is shown in Fig. 9.

4.4. Comparisons of performance and accuracy

To show the effectiveness of FODN4PS, we compared it with the cur-
rent popular two-stage target detection algorithm, Faster R-CNN and
Mask R-CNN and one-stage target detection algorithm, YOLOv3. The re-
sults are shown in Table 2.We can see clearly that the detection speed is
0.1 s faster than Faster R-CNN, and 0.06 s faster than Mask R-CNN, and
the accuracy is improved by 7% and 4% respectively. Compared with
the single-stage target detection network YOLOv3, FODN4PS is slower
but it's twice as accurate as it.

5. Conclusions and future work

Foreign objects intrusion detection is essential for the safety of
power grid operation. However. The existing work usually changes
the R-CNN on the basis of retaining RPN components, which generates
a lot of redundant anchors that incurs bad performance as computation
arewasted on these anchors.We optimize this process by extracting ac-
curate target candidate boxes that do not involve a series of complex
calculations. In order to effectively detect foreign objects, this paper pro-
poses a new neural network, FODN4PS, which consists of a region gen-
eration network MORE Net and classification network.

To efficiently train the FODN4PS, we increase the number of training
samples through GAN and rotating images randomly. Wemade a series
of experiments to evaluate FODN4PS Network. The experimental result
shows that FODN4PS has higher accuracy, and faster detection speed.

In the future, we will pay more attention to improve MORE Net and
make it extract the target region in a shorter time. We are evaluating
more scenes to further refine the FODN4PS network.
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